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Studying seasonality by using sine and cosine
functions in regression analysis

A M Stolwijk, H Straatman, G A Zielhuis

Abstract

Study objective—A statistical test that
allows for adjustment of confounding can
be helpful for the study of seasonal
patterns. The aim of this article is to sup-
ply a detailed description of such a
method. An example of its application is
given.

Design—A statistical test is presented that
retains the information on the connection
of time periods by describing the seasonal
pattern as one sine and one cosine
function. Such functions can be included
into a regression model. The resulting
form of the seasonal pattern follows a
cosine function with variable amplitude
and shift.

Main results—The test is shown to be
applicable to test for seasonality. Not only
one cosine function per time period, but
also a mixture of cosine functions can be
used to describe the seasonal pattern.
Adjustment for confounding effects is
possible.

Conclusions—This method for studying
seasonal patterns can be applied easily in
a regression model. Adjusted prevalences
and odds ratios can be calculated.

(¥ Epidemiol Communiry Health 1999;53:235-238)

Many studies have been published that con-
cerned seasonal variation, for instance in
births,' early pregnancy loss,” and in congenital
malformations.” Whether a seasonal pattern
exists can be studied in several ways. In this
article we demonstrate a method that allows for
adjustment of confounding. The first part is a
general approach of studying seasonal patterns.
In the second part we show a more detailed
description of the method by means of
mathematical functions. Subsequently, we give
an application of this method using fictitious
data. As an example we use the study of
seasonality in anencephaly frequency at birth.

Studying seasonality, a general approach

To study the seasonal variation in congenital
malformations, data analysis can be performed
in successive stages. The first step is to
calculate and plot the prevalence of malforma-
tions at birth per month. Then confidence
intervals surrounding the monthly prevalences
can be calculated and added to the figure.
From this information, it can be inferred
whether there are differences in malformations
per month and whether there are differences
between the months. In the same way, clusters
of months can be formed and compared with
other clusters of months. If confounding is pre-

sumed to occur, the next step is to adjust for
such confounding effects. One way to perform
this is by means of stratification so that insight
can be gained into whether prevalences differ
between months or clusters of months after
adjustment for confounding. In this phase,
problems may occur if several confounding
factors are present. Adjustment for their effects
simultaneously by means of stratification will
often lead to small numbers of observations per
month and thus to imprecise estimations of the
prevalences. None the less, these preliminary
phases of analysis will provide the first
indications of whether there is a specific
seasonal pattern in malformations. Rough evi-
dence of such a pattern warrants a statistical
test. In addition, a method is necessary that
allows for adjustment of the effects of several
confounders simultaneously.

We focus on the question of whether there is
a seasonal pattern in malformations during the
course of a year, without paying attention to
changes between years. To test for seasonality,
a 7’ test can be used to detect any departure
from a uniform distribution. A more specific
test should take into account the connection
between time periods such as months or weeks.
The method of Edwards* tests whether fre-
quencies follow a sine function over 12 months.
Also adaptations of the Edwards’ test are suit-
able, for instance the one of Cave and
Freedman’ to test a bimodal seasonal pattern
over 12 months, of Walter and Elwood,® which
can be used in the case of unequal populations
at risk, of Roger’ for small sample sizes, and of
Jones et al’ for an arbitrary shape of the
seasonal effect. The non-parametric Hewitt’s
test’ or its adaptation for other than six month
periods by Rogerson' can also be applied, but
they are less powerful than parametric tests. A
Kolmogorov-Smirnov ~ type  statistic  of
Freedman'' has a better power than the ¥ test
and the Hewitt’s test in samples of moderate
size. None of these tests allows for adjustment
of confounding effects, except the method of
Jones ez al.® Some of them, including the latter,
require special software. Moreover, the test of
Jones et al can only be used for—usually rare—
events that follow a Poisson distribution.
Therefore another test that allows for adjust-
ment of confounding and that can be per-
formed by widely available statistical computer
programs is warranted.

In epidemiological practice, multivariate
analysis techniques are commonly used to
adjust for confounding. Linear regression
analysis is often performed if the dependent
variable has a normal distribution. In studies
on seasonality in malformations, the dependent
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variable is likely to be dichotomous, for example
anencephaly is either present or it is not. In such
a case, logistic regression analysis can be used.

To test whether congenital malformations
are seasonally distributed, one sine and one
cosine function can be introduced into the
regression model. This results in a pattern fol-
lowing a cosine function with variable ampli-
tude and shift. Depending on the hypothesis
being tested, the period of the cosine function
can be one year, half a year or shorter. The
maximum likelihood method estimates the
regression coefficients for the best fitting
regression line. The amplitude and the amount
of shift of the cosine function can be calculated
from the regression coefficients. For each time
period, the probability of a malformation and
the odds ratios can be calculated using the
logistic regression model. Such a method was
applied before, for instance by Bound ez al’ and
Woodhouse et al,”” but not fully explicated.
Therefore this paper will give a detailed
description and an example. For more ad-
vanced models in time series we refer to Fahr-
meir and Tutz.”

Detailed description of the method

A linear regression model can be developed to
analyse seasonality in congenital malforma-
tions. Generally speaking, such a model will
have the following form:

y = :80 + Bxeaxon X season
+ B, X Cy+ ...+ Be, X Cy

where f3, is the intercept and C indicates a con-
founder; y is a continuous variable related to
the presence of a congenital malformation and
is normally distributed or can be transformed
into such a distribution. An example of such a
variable is the level of a fetoprotein. In many
studies on congenital malformations, the out-
come parameter is defined as the probability of
malformation. This probability can be mod-
elled in a logistic regression model such as:

P
ln(ﬁ) = BO + Bseason X season

+ B, XCr+ ...+ B, XCy

where P is the probability of a malformation,
for instance the probability of anencephaly. To
define the variable “season” in these models, it
is hypothesised that the seasonal pattern under
study follows a cosine function with variable
amplitude and horizontal shift. In this cosine
function, two periods must be defined: (a) the
time period that defines the measure of malfor-
mation, for example, “month” in “the probabil-
ity of an anencephalus birth per month” and
(b) the period described by one cosine
function. As an example we take “month” as
the time period under study, and “one year” as
the period of the cosine function. The cosine
function can be described as:

70 =a><cos{(27;t)—0} (1)
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KEY POINTS

® A statistical test is presented to study sea-
sonal patterns.

® This method can be applied in a
regression model.

® Adjustment of confounding is possible.

T= number of time periods described by one
cosine function over (0, 2n) (for example, 7" =
12 months);

¢t = time period (for example, for January: z =
1, for February: ¢ = 2, etc);

a = amplitude, > 0;

0 = horizontal shift of the cosine function (in
radials).

As 0 is unknown, transformation of this
cosine function is required before the
regression analysis can be performed. There-
fore the following formula is included into a
regression model:

f@) =B, % sin(L:f) + B, X cos(zf;t) (2)

Including this formula into the logistic
regression model results in:

P, (2
ln(1 — Pz) =B, + B X s1n<%t) + B,

2wt
Xcos(%)+BC1XC1+....+BCN><CN

Then the probability of malformation in each
time period can be calculated by:

eBotBix sin(ﬁ) +82X605(@)+BCI XCy+. ... +Be,XCy
T T

lz
BotB xsin(z [)+B ><cos<2 ’)+Bq><C +.. .+ B, XCy
1 + Ptk 2 C, 1 C N

With this information the best fitting seasonal
pattern can be plotted. To describe the
function of this plot by means of the cosine
function presented in formula (1), the ampli-
tude and shift have to be calculated using
formula (2). The amplitude is:

and two extreme values in (0,7) can be found
at the solutions of:

n(220) < B
T B>

By solving:

t = arctan( — | X —
B> 27

one value 7 is retrieved. If §,/8, > 0, then z > 0
and indicates the first extreme; the other
extreme value is found at z + 7/2. If $,/B, < O,
then ¢ < 0; the extreme values are found at ¢ +
T/2 and at ¢ + T. If B, > 0, the first extreme is a
maximum and the second a minimum; if B, <
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Table I  Numbers of anencephalus cases and total births, fictitiously divided into data from boys and girls
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Data from Walter and Elwood®

Fictitious data

Total Boys Girls

Month of  Anencephalus Prevalence (per Anencephalus Prevalence (per Anencephalus Prevalence (per
birth cases Toral births 100 000) cases Total births 100 000) cases Total births 100 000)
January 468 340 797 137 463 252 695 183 5 88 102 5.68
February 399 318 319 125 392 215 431 182 7 102 888 6.80
March 471 363 626 130 459 205 341 224 12 158 285 7.58
April 437 359 689 121 417 156 571 266 20 203118 9.85
May 376 373 878 101 347 120 846 287 29 253 032 11.46
June 410 361 290 113 375 93 400 401 35 267 890 13.07
July 399 368 867 108 364 95 359 382 35 273 508 12.80
August 472 358 531 132 444 115 886 383 28 242 645 11.54
September 418 363 551 115 398 158 252 251 20 205 299 9.74
October 448 352173 127 436 198 874 219 12 153 299 7.83
November 409 331 964 123 402 224 665 179 7 107 299 6.52
December 397 336 894 118 392 249 801 157 5 87 093 5.74
Table 2 Results of the models and accompanying tests for seasonality, with degrees of freedom (df) and p values
Test Maximum Minimum Test statistic  Df p Value Deviance Df p Value
A Edwards, 12 month period: Dec Jun 0.801 2 <0.7

Frequencies proportional to 1 + a cos (©,—©%*)
B Walter and Elwood, 12 month period: Dec Jun 12.48% 2 <0.005

m;[1 + a cos (O,—O*)], m; = number of births per

month
C Logistic, cosine function with 12 month period: Dec Jun 12.41% 2 0.002 23.93 9 0.004

In[P/(1-P)] = — 6.718 + 0.009822 x sin(2n#/12) +

0.06929 x cos(2n/12)
D Logistic, cosine function with 6 month period: Feb, Aug May, Nov 8.55% 2 0.01 27.80 9 0.001

In[P/(1-P)] = = 6.719 + 0.03647 % sin(2n7/6)

— 0.04525 x cos(2m/6)
E Logistic, mix of two cosine functions with 12 and 6 Feb Jun 8.541§ 2 0.01 15.39 7 0.03

month periods:
In[P/(1-P)] = = 6.719 + 0.009869 x sin(2n#/12) +
0.06985 x cos(2n#/12) + 0.03661 x sin(2nz/6) —

0.04511 % cos(2mt/6)

FInformation from Walter and Elwood.® tLikelihood ratio test result [-2In(L,/L,)]. §Test of model E versus model C.

Prevalance (per 100 000)

140

100

0 it is the other way around. The maximum
extreme (z,,) indicates the shift 0 in formula

‘max.

(1), which can be calculated by: 2mz, /T

radials.

Application to data

As an example we applied this method for
studying seasonality to data from anencephalus
births and total births described by Walter and
Elwood® (table 1). In their article they pre-
sented the results of several tests of seasonality:
the method of Edwards using only case
frequencies or using adjusted frequencies, their
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Figure 1 Probability of a child with anencephaly (P), expressed as the prevalence of
anencephaly per 100 000 births. Square symbols, prevalence; dotted line, cosine function
with period of 12 months; dashed line, cosine function with period of six months; solid line,
mix of rwo cosine functions (see table 2 for formulas).

own method assuming months of equal length
or exact month lengths and Hewitt’s non-
parametric test. They found that neither
Edwards’s test using frequencies nor Hewitt’s
test detected a seasonal pattern. The other
three methods did find a seasonal pattern with
the maximum prevalence of anencephaly in
late December.

We used sine and cosine functions in a logis-
tic regression analysis to test for seasonality in
the prevalence of anencephaly. Firstly, we
tested whether there was a seasonal pattern
with one maximum level and one minimum
level per year—that is, a cosine function with a
period of 12 months. Secondly, we studied
whether the seasonal pattern in the prevalence
of anencephaly was better described by a
cosine functions with a period of six months
(that is, T = 6), or, thirdly, by a mix of one
cosine function with a period of 12 months and
one with a period of six months. In figure 1 the
cosine functions are shown. In table 2 the
logistic regression models and their results are
presented: regression coefficients, maximum
and minimum levels, likelihood ratio test
results, and deviances.

Firstly, the test of a seasonal pattern with one
maximum per year. The time period is the
“month” and the period of the cosine function
is “one year”. We also found a seasonal pattern.
The maximum prevalence was observed in
December (z,,, = 0.27) and the minimum in
June (z,,, = 0.27 + T/2 = 6.27), in agreement
with the results described by Walter and
Edwards. The pattern could be described by a
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Total, boys: prevalence (per 100 000)
Girls: prevalence (per 100 000)
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Figure 2 Probability of a child with anencephaly (P), expressed as the prevalence of
anencephaly per 100 000 births, crude and after adjustment for sex (fictitious data). Dotted
line, crude cosine function with period of 12 months; square symbols, prevalence in total

population; solid line, sex adjusted cosine function with period of 12 months, inverted
triangles, prevalence among boys; crosses, prevalence among girls.

cosine function with an amplitude of 0.070 and
a shift of 0.14 (= 2m X 0.27/7T) radials.
Secondly, the test of seasonal pattern that
could be described by a cosine function with a
period of six months showed no better fit than
the former model. Then we tested whether the
model using the cosine function with a period
of 12 months could be improved by adding a
second cosine function to the model with a
period of six months. From figure 2 and the
likelihood ratio test result in table 2 it can be
derived that this extra cosine function im-
proved the model. This model with a mix of
cosine functions indicated the highest peak
about in February and the lowest through
about in June. The goodness of fit statistic for
this model is given by a deviance of 15.39,
df=7, p=0.03, which shows a statistically lack
of fit. This clear indication of overdispersion
should be taken into account, for instance by a
model based approach that considers a model
with a random month effect throughout. We
performed this analysis by means of a logistic
normal module in EGRET." The comparison
of the model with two cosine functions and a
random effect versus the “constant” model
with random effect resulted in a y* of
25.28-14.98=10.3, df=4, p=0.036. Thus, this
appropriate analysis shows that there is season-
ality that exceeds the apparent month to month
variation that is statistically significant at
0=0.05 and can be described by the mix of two
cosine functions.

For means of illustration of the way to
control for confounding, we ignore the fact that
the mix of cosine functions fitted the data of
Walter and FElwood better than a cosine
function with a period of 12 months. We ficti-
tiously divided the data into data from boys and
from girls, so that confounding by sex was
present (table 1). In figure 2 the unimodal
crude and adjusted cosine functions with a
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period of 12 months are presented, showing
considerable confounding by sex. As shown
before, the crude cosine function had an
amplitude of 0.070 and a shift of 0.14 radials,
which gives the maximum prevalence of anen-
cephaly in December and the minimum in
June. The sex adjusted seasonal pattern in the
prevalence of anencephaly could be described
by:

Pz . 2t
In = —9.358-0.1182 X sin| ——
1-P, 12

2Tt
—0.4086 X cos 12 + 3.358 X sex

in which sex = 1 for boys and sex = 0 for girls.
The maximum extreme was found in June (z,,, =
0.54 + T/2 = 6.54). This results in a cosine
function with an amplitude of 0.43 and the shift
of 21 X 6.54/T = 3.42 radials (fig 2). Thus after
adjustment for the fictitiously introduced sex
distribution, we found a totally opposite sea-
sonal pattern with the maximum prevalence
observed in June and the minimum in Decem-
ber.

We conclude that it is possible to test for
seasonal patterns by means of applying sine
and cosine functions into regression analysis.
Not only a period of, for instance, 12 or 6
months can be described by such a cosine
function, but also a mixture of cosine func-
tions is possible. Moreover, this way of analys-
ing seasonality allows for adjustment of
confounding effects.
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